SANITARY SEWER ENGINEER'S REPORT

For

Stack Storage, LLC Proposed Self-Storage Facility

Vanderburg Road and Boundary Road Block 360, Lots 7 & 8 Township of Marlboro Monmouth County, New Jersey

Prepared By:

DNAMIC ENGINEERING

1904 Main Street Lake Como, NJ 07719 Tel. 732-974-0198

John A. Palus, PE, PP, LEED NJ Professional Engineer License #41975

> June 2021 DEC #3724-99-001

TABLE OF CONTENTS

		<u>Page</u>
I.	INTRODUCTION	1
II.	PROPOSED SANITARY SEWERAGE FACILITIES	1
III.	SANITARY SEWER PIPE DESIGN	1

APPENDIX

• Capacity of Circular Pipe Flowing ½ Full

I. INTRODUCTION

The subject property is known as Block 360, Lots 7 & 8 as shown on Sheet 93 of the Tax Maps of the Township of Marlboro, Monmouth County, New Jersey. The parcel consists of approximately 7.847 acres and is located in the LI (Light Industrial) Zoning District. The site currently consists of an undeveloped wood area and open space and is located at the southwesterly corner of the intersection of Vanderburg Road and Boundary Road. The parcel is bound to the west by various industrial buildings and commercial facilities; to the east by Boundary Road with agricultural land and residential dwellings beyond; to the north by Vanderburg Road with Vanderburg Soccer Complex with mixed industrial and residential uses beyond; and to the south by industrial uses.

The project includes the construction of three (3) single-story self-storage facilities, each 29,900 SF in size, and associated site improvements, including parking, driveways, sidewalks, landscaping, lighting and other associated site amenities.

II. PROPOSED SANITARY SEWERAGE FACILITES

The proposed development consists of the construction of a 6" SDR-35 PVC sanitary sewer lateral with a connection to the existing sanitary sewer main located along the westerly property boundary as shown on the associated Utility Plan, provided under separate cover. The sanitary sewer connection is intended to serve the office portion of the facility. According to the sanitary sewer demand calculations, the proposed daily sewerage flow is as follows:

Existing Average Daily Sewer Demand:	Proposed Average Daily Sewer Demand:
Undeveloped	Store, Office Building
0 GPD	0.1 GPD/SF X 700 SF = 70 GPD
TOTAL EXISTING = 0 GPD	TOTAL PROPOSED = 70 GPD

III. SANITARY SEWER PIPE DESIGN

Per NJDEP regulations, the criteria for establishing the size of gravity sanitary sewer is to convey two times the average daily flow with the pipe flowing half full. Utilizing Manning's Equation with a roughness coefficient of 0.010 for PVC pipe, the following is the minimum capacity of the proposed sanitary sewer gravity lateral:

Pipe Size	Slope	Roughness (n)	Capacity at 1/2 Full	ADF	2 X ADF
6"	2.08%	0.010	340,881 gpd	70 gpd	140 gpd

Proposed Self-Storage Facility

APPENDIX

CAPACITY OF CIRCULAR PIPE FLOWING AT 1/2 FULL

Capacity of Circular Pipe Flowing 1/2 Full Project: Proposed Self Storage Facility Computed By: TJB

Project: Proposed Self Storage Facility Job #: 3724-99-001 Location: Marlboro Township, Monmouth County, NJ Computed By: TJB Checked By: RDM Date: 6/22/2021

PIPE DESCRIPTION	SLOPE (%)	SIZE (IN)	MANNING'S COEFFICIENT (n)	VELOCITY (FT/S)	CAPACITY (CFS)	CAPACITY (GPD)	CAPACITY (MGD)
SDR-35 PVC	2.080%	6	0.010	5.37	0.53	340,881	0.34
Variables Defined			Typical Values for M	Anning's Coefficier	nt (n)		
Q=Capacity of Pipe (CFS)			n(RCP)=	0.013			
V=Velocity in Pipe Section (FT/S)		n(HDPE-Smooth Interior)= 0.012 *Varies with Manufacturer					
R=Hydraulic Radius of Pipe Section			n(DIP)=	0.013			
S=Slope of Pipe Section (FT/FT)			n(PVC)=	0.010			
D=Diameter of Pipe (FI)	(FT)		n(CMP)=	0.024			
a=Depth of Flow in Pipe	(FI)						
n=wanning s Coefficien	t = T \						
wp-wetted Ferinteter (i	-1)						
Equations used:							
Q=VA							
V=(1.49/n)*R^(2/3)*S^(1/	2)						
Q=(1.49/n)*R^(2/3)*S^(1	(2)*A						
	,						
Utilizing Appendix 16.A fr	om the Civil Engine	ering Reference Ma	nual-Seventh Edition	n, by Micheal Lindeb	ourg, Copyright 1999	9	
The following equations w	vere utilized to calcu	late the Hydraulic R	adius and Area of a	Circular Pipe Section	on flowing 1/2 full		
Α=(π*D^2/4)*0.5=0.3927	*D^2						
R=A/Wp=0.3927*D^2/((2	*π*D/2)*0.5)=0.25*	D					
Therefore:							
Q=(1.49/n)*(0.25*D)^(2/3)*S^(1/2)*(0.3927*I	D^2)					
V=(1.49/n)*(0.25*D)^(2/3)*S^(1/2)						
1 Cubic East=7 4805 Co	<u>s</u> llene						
1 Cubic F001-7.4805 Ga	lions						
T Day - 00,400 Seconds							
Cubic Foot		86 400 Seconds		7 4805 Gallons		Gallon	
Second	х	1 Day	X	1 Cubic Foot		Dav	
Second		i Day				Day	
Gallon		1 Million Gallons		Million Gallons			
Dav	Х	1.000.000 Gallons	=	Dav			
,		,		,			